Intel iMac Lacks Speed With Non-Apple Apps





Few major non-Apple programs take advantage of the iMac's Intel chip set--so far.

Apple's 20-inch iMac with the 2-GHz Intel Core Duo processor looks identical to the 2.1-GHz iMac G5 that we reviewed in February. The primary difference is that while Apple's own applications run faster on the new machine, current third-party software such as Adobe Photoshop CS2 is not yet optimized for the Intel processor, and such programs may run much more slowly than before.

Right now most of the Intel-friendly software is written by Apple, whose optimized iLife programs (iMovie, iPhoto, iTunes, and iDVD) were quicker than their PowerPC counterparts in tests conducted by our sibling publication Macworld. Also, Macworld found that the Intel iMac starts up nearly twice as fast as the previous iMac G5. In my own informal tests, I found using iTunes and browsing the Web with Safari to be much snappier. In contrast, Mozilla's Firefox took twice as long to do the same things.

In a worst-case scenario, software that's not yet optimized for the Intel processor, such as Microsoft's VirtualPC, won't run at all. Most software, however, just runs more slowly, since Apple Rosetta has to translate PowerPC-based software for the Intel processor. In Macworld's tests, Photoshop took twice as long--and Microsoft Word about twice as long--to finish tasks on the Intel Mac as it did on the earlier non-Intel G5.

Apple added a mini-DVI port with second-monitor capabilities. However, you'll need to purchase a $19 adapter to take advantage of it.

Because of the Intel-based iMac's performance handicap with nonoptimized software, I rate this shipping iMac a point below its non-Intel predecessor. Though the move to the Intel platform speeds up natively written programs and opens the door to the possibility of being able to dual-boot with Windows Vista, right now programs that are not designed for the Intel Mac (and that's a lot of them) lose speed on this machine.
Apple iMac

The Intel-based iMac is a full-featured, appealingly priced system, but the new processor currently delivers speed only with software written for the Intel processor. Price when reviewed: $1699 Current Prices (if available)

Intel Processors





Intel® desktop processors deliver superb computing power, performance, and reliability at home and at work. Our notebook processors let you work and play in places you never thought possible. Our server and workstation processors provide enhanced scalability, power, and performance for robust multi-processing environments. And our embedded and communications processors combine outstanding performance with scalable, power-efficient processing for a wide range of embedded applications.

Toshiba_Qosmio_X305





Sony_VGN-FW198UH




Intel® Core™ i7 Processor




The best desktop processors on the planet¹

Brilliantly fast

With faster, intelligent, multi-core technology that applies processing power where it's needed most, new Intel® Core™ i7 processors deliver an incredible breakthrough in PC performance. They are the best desktop processors on the planet.¹

You'll multitask applications faster and unleash incredible digital media creation. And you'll experience maximum performance for everything you do, thanks to the combination of Intel® Turbo Boost technology² and Intel® Hyper-Threading technology (Intel® HT technology)³, which maximizes performance to match your workload.

Product information

  • 2.93 GHz and 2.66 GHz core speed
  • 8 processing threads with Intel® HT technology
  • 8 MB of Intel® Smart Cache
  • 3 Channels of DDR3 1066 MHz memory

Wield the ultimate gaming weapon

Conquer the world of extreme gaming with the fastest performing processor on the planet: the Intel® Core™ i7 processor Extreme Edition.¹ With faster, intelligent multi-core technology that accelerates performance to match your workload, it delivers an incredible breakthrough in gaming performance.

But performance doesn't stop at gaming. You'll multitask 25 percent faster and unleash incredible digital media creation with up to 79 percent faster video encoding and up to 46 percent faster image rendering, plus incredible performance for photo retouching and editing.¹

In fact, you'll experience maximum performance for whatever you do, thanks to the combination of Intel® Turbo Boost technology² and Intel® Hyper-Threading technology (Intel® HT technology)³, which activates full processing power exactly where and when you need it most.


Product information

* 3.20 GHz core speed
* 8 processing threads with Intel® HT technology
* 8 MB of Intel® Smart Cache
* 3 Channels of DDR3 1066 MHz memory

* View Intel Core i7 processor Extreme Edition performance benchmarks
*
Download the product brief

File Type/Size: PDF 822KB
* See product image
* Learn about processor numbersΔ

Compare products

* Compare desktop processors
* Compare motherboards and barebones
* Compare chipsets


Features and benefits
Get extreme with your gaming and advanced multimedia.

Intel Core i7 processors deliver an incredible breakthrough in quad-core performance and feature the latest innovations in processor technologies:

* Intel® Turbo Boost technology maximizes speed for demanding applications, dynamically accelerating performance to match your workload-more performance when you need it the most.²
* Intel® Hyper-Threading technology enables highly threaded applications to get more work done in parallel. With 8 threads available to the operating system, multi-tasking becomes even easier.³
* Intel® Smart Cache provides a higher-performance, more efficient cache subsystem. Optimized for industry leading multi-threaded games.
* Intel® QuickPath Interconnect is designed for increased bandwidth and low latency. It can achieve data transfer speeds as high as 25.6 GB/sec with the Extreme Edition processor.
* Integrated memory controller enables three channels of DDR3 1066 MHz memory, resulting in up to 25.6 GB/sec memory bandwidth. This memory controller's lower latency and higher memory bandwidth delivers amazing performance for data-intensive applications.
* Intel® HD Boost significantly improves a broad range of multimedia and compute-intensive applications. The 128-bit SSE instructions are issued at a throughput rate of one per clock cycle, allowing a new level of processing efficiency with SSE4 optimized applications.

* Buy an Intel Core i7 processor Extreme Edition based PC today and learn what it means to really get your game on

¹ Performance based on select industry benchmarks, game titles, and multimedia creation applications. Actual performance may vary. See www.intel.com/performance/desktop/extreme/ for additional information.

² Enabling Intel® Turbo Boost technology (Intel® TBT) requires a PC with a processor with Intel TBT capability. Intel TBT performance varies depending on hardware, software and overall system configuration. Check with your PC manufacturer on whether your system delivers Intel TBT. For more information, see: www.intel.com/technology/turboboost.

³ Intel® Hyper-Threading Technology (Intel® HT Technology) requires a computer system with an Intel® Processor supporting Intel HT Technology and an Intel HT Technology enabled chipset, BIOS, and operating system. Performance will vary depending on the specific hardware and software you use. See www.intel.com/products/ht/hyperthreading_more.htm for more information including details on which processors support Intel HT Technology.

Δ Intel® processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different processor families. See www.intel.com/products/processor_number/ for details.




Intel® Desktop Board DX58SO



The Intel® Desktop Board DX58SO is designed to unleash the power of the all new Intel® Core™ i7 processors with support for up to eight threads of raw CPU processing power, triple channel DDR3 memory and full support for ATI CrossfireX* technology. Today’s PC games like Far Cry 2* and Call of Duty: World at War* need a computing platform that delivers maximum multi-threaded CPU support and eye-popping graphics support.


Features and benefits
Form factor ATX (12.00 inches by 9.60 inches [304.80 millimeters by 243.84 millimeters])
Processor Click View supported processors for the most current list of compatible processors.
At product launch, this desktop board supports:

* Support for a Intel® Core™ i7 processor in an LGA1366 socket

Memory

* Four 240-pin DDR3 SDRAM Dual Inline Memory Module (DIMM) sockets
* Support for DDR3 1600 MHzς, DDR3 1333 MHzς, DDR3 1066 MHz
* Support for up to 16 GBς of system memory

Chipset

* Intel® X58 Express Chipset

Audio Intel® High Definition Audio subsystem in the following configuration:

* 8-channel (7.1) Dolby Home Theater* Audio subsystem with five analog audio outputs and two S/PDIF digital audio outputs (coaxial and optical) using the Sigmatel* 9274D audio codec

Video

* ATI CrossFire* multi-GPU platform support ATI CrossFire technology enables two ATI* graphics cards to work together for ultimate 3D gaming performance and visual quality
* Full support of next-generation ATI CrossFire*

LAN support Gigabit (10/100/1000 Mbits/sec) LAN subsystem
Peripheral interfaces

* Twelve USB 2.0 ports (8 external ports, 2 internal headers)
* Six Serial ATA 3.0 Gb/s ports, including 2 eSATA port with RAID support supplied by a Marvell* controller
* Two IEEE-1394a ports (1 external port, 1 internal header)
* Consumer IR receiver and emitter (via internal headers)

Expansion capabilities

* One PCI Conventional* bus add-in card connectors (SMBus routed to PCI Conventional bus add-in card connector)
* One primary PCI Express* 2.0 x16 (electrical x16) bus add-in card connector
* One secondary PCI Express 2.0 x16 (electrical x16) bus add-in card connector
* One PCI Express* 1.0a x16 (electrical x4) bus add-in card connector



Intel® Desktop Board D101GGC


The Intel® Desktop Board D101GGC delivers an integrated graphics solution for your next value platform. The Intel® Desktop Board D101GGC supports the Intel® Pentium® D Processor, the Intel® Pentium® 4 Processor with Hyper-Threading Technology† and the Intel® Celeron® D processor in the LGA775 package. This uATX board delivers both quality and value by offering features such as High Definition Audio and Realtek* 8101L 10/100 LAN. This desktop board also features PCI Express* x16, DDR 400/333 memory, and 8 USB 2.0 ports.
View Available Configurations
Get Windows* Hardware Quality Labs (WHQL) Information
View Industry Specifications
View Regulatory Compliance Information



Intel® Desktop Board D101GGC Features
Features Benefits
Form Factor microATX (9.60 inches by 8.60 inches [243.84 mm by 218.44 mm])
Processor
Support for an Intel® Pentium® D Processor in an LGA775 socket with an 800 MHz system bus
Support for an Intel® Pentium® 4 Processor in an LGA775 socket with an 800 or 533 MHz system bus
Support for an Intel® Celeron® D Processor in an LGA775 socket with a 533 MHz system bus
View all supported processors
Memory
Two DDR SDRAM Dual Inline Memory Module (DIMM) sockets
Support for DDR 400 MHz and DDR 333 MHz DIMMs
Support for up to 2 GB of system memory
Chipset ATI* Radeon* Xpress 200 Chipset
BIOS AwardBIOS* for Intel resident in the 4 Mbit FWH
I/O Control SMSC* SCH5017 Legacy I/O controller for hardware management, diskette drive, serial, parallel, and PS/2 ports
Audio High Definition Audio subsystem using the Realtek* ALC861 audio codec
Video Integrated ATI* Radeon* X300 based graphics
LAN Support 10/100 Mbits/sec LAN subsystem using the Realtek* 8101L LAN adapter device
Peripheral Interfaces
Eight USB 2.0 ports
One serial port
One parallel port
Four Serial ATA interfaces
Two parallel ATA IDE interfaces with UDMA 33, ATA-66/100 support
One diskette drive interface
PS/2 keyboard and mouse ports
Expansion Capabilities
Two PCI Conventional* bus connectors
One PCI Express* x1 bus add-in card connector
One PCI Express* x16 bus add-in card connector




Intel A100


The Intel processors A100 and A110 are x86 architecture low-power microprocessors (code-named Stealey), with a Dothan core derived from the Intel Pentium M, built on a 90 nm process with 512KB L2 cache and 400MHz front side bus (FSB). The A100/A110 represent the CPU component of the McCaslin platform.[1] They are to be replaced in 2008 by the Menlow platform, including the Silverthorne (Intel Atom) 45nm CPU and Poulsbo chipset.[2]

The A110 runs at 800MHz, the A100 at 600MHz, and both have a TDP of 3 watts, and a power consumption in the lowest power state of only 0.4 watts.[3]

The A100 and A110 processors are part of the Intel Ultra Mobile Platform 2007[4] and were designed to be used in MIDs, UMPCs and Ultralight laptops, like the Kohjinsha Convertible Tablet PC.[5]




Original Itanium processor: 2001–02

By the time Itanium was released in June, 2001, it was no longer superior to contemporaneous RISC and CISC processors. Itanium competed at the low-end (primarily 4-CPU and smaller systems) with servers based on x86 processors, and at the high end with IBM's POWER architecture and Sun Microsystems' SPARC architecture. Intel repositioned Itanium to focus on high-end business and HPC computing, attempting to duplicate x86's successful "horizontal" market (i.e., single architecture, multiple systems vendors). The success of this initial processor version was limited to replacing PA-RISC and Alpha in HP systems and MIPS in SGI's HPC systems, though IBM also delivered a supercomputer based on this processor.[20] POWER and SPARC remained strong, while the 32-bit x86 architecture continued to grow into the enterprise space. With economies of scale fueled by its enormous installed base, x86 has remained the preeminent "horizontal" architecture in enterprise computing.

Only a few thousand systems using the original Itanium processor were sold, due to relatively poor performance, high cost and limited software availability.[21] Recognizing that the lack of software could be a serious issue moving forward, Intel made thousands of these early systems available to independent software vendors (ISVs) to stimulate development. HP and Intel brought the next-generation Itanium 2 processor to market a year later.

Itanium 2 processors: 2002–present The Itanium 2 processor was released in 2002, and was marketed for enterprise servers rather than for the whole gamut of high-end computing. The initial Itanium 2 was codenamed McKinley. McKinley was manufactured using a 180 nm process technology, and relieved many of the performance problems of the original Itanium processor.[22]

In 2003, AMD released the Opteron, which implemented its 64-bit architecture (x86-64). Opteron gained rapid acceptance in the enterprise server space because it provided an easy upgrade from x86. Intel responded by implementing x86-64 in its Xeon microprocessors in 2004.[8] Intel released a new Itanium 2 family member, codenamed Madison, in 2003. Madison used a 130 nm process and was the basis of all new Itanium processors until Montecito was released in June 2006.

In March, 2005, Intel announced that it was working on a new Itanium processor, codenamed Tukwila, to be released in 2007. Tukwila would have four processor cores and would replace the Itanium bus with a new Common System Interface, which would also be used by a new Xeon processor.[4] Intel later said that Tukwila would be delivered in late 2008.[23]

In November 2005, the major Itanium server manufacturers joined with Intel and a number of software vendors to form the Itanium Solutions Alliance to promote the architecture and accelerate software porting.[24] The Alliance announced that its members would invest $10 Billion in Itanium solutions by the end of the decade.[25]

In 2006, Intel delivered Montecito, a dual-core processor that roughly doubled performance and decreased energy consumption by about 20 percent. Quad-core Tukwila processors are still expected to be available to OEMs in late 2008, with systems reaching the marketplace in early 2009.[3]

In comparison with its Xeon family of server processors, Itanium is not a high-volume product for Intel. Intel does not release production numbers, but one industry analyst estimated that the production rate was 200,000 processors per year in 2007.[26] According to Gartner Inc., the total number of Itanium servers sold by all vendors in 2007 was about 55,000. This compares with 417,000 RISC servers (spread across all RISC vendors) and 8.4 million x86 servers. From 2001 through 2007, IDC reports that a total of 184,000 Itanium-based systems have been sold. For the combined POWER/SPARC/Itanium systems market, IDC reports that POWER captured 42% and SPARC captured 32%, while Itanium-based system revenue reached 26% in the second quarter of 2008.[27] According to an IDC analyst, HP currently accounts for perhaps 80% of Itanium systems revenue.[28]

Architecture
Intel has extensively documented the Itanium instruction set and microarchitecture,[29] and the technical press has provided overviews.[30][13] The architecture has been renamed several times during its history. HP originally called it PA-WideWord. Intel later called it IA-64, then Itanium Processor Architecture (IPA),[31] before settling on Intel Itanium Architecture, but it is still widely referred to as IA-64. It is a 64-bit register-rich explicitly-parallel architecture. The base data word is 64 bits, byte-addressable. The logical address space is 264 bytes. The architecture implements predication, speculation, and branch prediction. It uses a hardware register renaming mechanism rather than simple register windowing for parameter passing. The same mechanism is also used to permit parallel execution of loops. Speculation, prediction, predication, and renaming are under control of the compiler: each instruction word includes extra bits for this. This approach is the distinguishing characteristic of the architecture.

The architecture implements 128 integer registers, 128 floating point registers, 64 one-bit predicates, and eight branch registers. The floating point registers are 82 bits long to preserve precision for intermediate results.

Instruction execution
Each 128-bit instruction word contains three instructions, and the fetch mechanism can read up to two instruction words per clock from the L1 cache into the pipeline. When the compiler can take maximum advantage of this, the processor can execute six instructions per clock cycle. The processor has thirty functional execution units in eleven groups. Each unit can execute a particular subset of the instruction set, and each unit executes at a rate of one instruction per cycle unless execution stalls waiting for data. While not all units in a group execute identical subsets of the instruction set, common instructions can be executed in multiple units.

The execution unit groups include:

* Six general-purpose ALUs, two integer units, one shift unit
* Four data cache units
* Six multimedia units, two parallel shift units, one parallel multiply, one population count
* Two floating-point multiply-accumulate units, two "miscellaneous" floating-point units
* Three branch units

The compiler can often group instructions into sets of six that can execute at the same time. Since the floating-point units implement a multiply-accumulate operation, a single floating point instruction can perform the work of two instructions when the application requires a multiply followed by an add: this is very common in scientific processing. When it occurs, the processor can execute four FLOPs per cycle. For example, the 800 MHz Itanium had a theoretical rating of 3.2 GFLOPS and the fastest Itanium 2, at 1.67 GHz, was rated at 6.67 GFLOPS

Memory architecture
From 2002 to 2006, Itanium 2 processors shared a common cache hierarchy. They had 16 KB[32] of Level 1 instruction cache and 16 KB of Level 1 data cache. The L2 cache was unified (both instruction and data) and is 256 KB. The Level 3 cache was also unified and varied in size from 1.5 MB[32] to 24 MB. The 256 KB L2 cache contains sufficient logic to handle semaphore operations without disturbing the main arithmetic logic unit (ALU).

Main memory is accessed through a bus to an off-chip chipset. The Itanium 2 bus was initially called the McKinley bus, but is now usually referred to as the Itanium bus. The speed of the bus has increased steadily with new processor releases. The bus transfers 2x128 bits per clock cycle, so the 200 MHz McKinley bus transferred 6.4 GB/s[33] and the 533 MHz Montecito bus transfers 17.056 GB/s.

Architectural changes
Itanium processors released prior to 2006 had hardware support for the IA-32 architecture to permit support for legacy server applications, but performance for IA-32 code was much worse than for native code and also worse than the performance of contemporaneous x86 processors. In 2005, Intel developed the IA-32 Execution Layer (IA-32 EL), a software emulator that provides better performance. With Montecito, Intel therefore eliminated hardware support for IA-32 code.

In 2006, with the release of Montecito, Intel made a number of enhancements to the basic processor architecture including:[35]

* Hardware Multithreading: Each processor core maintains context for two threads of execution. When one thread stalls during memory access, the other thread can execute. Intel calls this "coarse multithreading" to distinguish it from the "hyperthreading technology" Intel integrated into some x86 and x86-64 microprocessors. Coarse multithreading is well matched to the Intel Itanium Architecture and results in an appreciable performance gain.
* Hardware Support for Virtualization: Intel added Intel Virtualization Technology (Intel VT), which provides hardware assists for core virtualization functions. Virtualization allows a software "hypervisor" to run multiple operating system instances on the processor concurrently.
* Cache Enhancements: Montecito added a split L2 cache, which included a dedicated 1 MB L2 cache for instructions. The original 256 KB L2 cache was converted to a dedicated data cache. Montecito also included up to 12MB of on-die L3 cache.

Hardware support Systems
As of 2008, several manufacturers offer Itanium systems, including HP, SGI, NEC, Fujitsu, Unisys, Hitachi, and Groupe Bull. In addition, Intel offers a chassis[36] that can be used by system integrators to build Itanium systems. HP, the only one of the industry's top four server manufacturers to offer Itanium-based systems today, manufactures at least 80% of all Itanium systems. HP sold 7200 systems in the first quarter of 2006.[37] The bulk of systems sold are enterprise servers and machines for large-scale technical computing, with an average selling price per system in excess of US$200,000. A typical system uses eight or more Itanium processors.

Chipsets
The Itanium bus interfaces to the rest of the system via a chipset. Enterprise server manufacturers differentiate their systems by designing and developing chipsets that interface the processor to memory, interconnections, and peripheral controllers. The chipset is the heart of the system-level architecture for each system design. Development of a chipset costs tens of millions of dollars and represents a major commitment to the use of the Itanium. Currently, modern chipsets for Itanium are manufactured by HP, Fujitsu, SGI, NEC, Hitachi, and Unisys. IBM created a chipset in 2003, and Intel in 2002, but neither of them has developed chipsets to support newer technologies such as DDR2 or PCI Express.[38]

The upcoming Itanium processor (Tukwila) has been designed to share a common chipset with the Intel Xeon processor EX (Intel’s Xeon processor designed for four processor and larger servers). The goal is to provide system development and cost-saving synergies for server OEMs, many of whom develop both Itanium- and Xeon-based servers.

Software support
In order to allow more software to run on the Itanium, Intel supported the development of effective compilers for its platform, especially its own suite of compilers.[39][40] GCC,[41][42] Open64 and MS Visual Studio 2005 (and later)[43] are also able to produce machine code for Itanium. As of 2008, Itanium is supported by Windows Server 2003 and Windows Server 2008, multiple Linux distributions (including Debian, Red Hat and Novell SuSE), FreeBSD,[44] and HP-UX, OpenVMS, and NonStop from HP, all natively. HP also sells a virtualization technology for Itanium called Integrity Virtual Machines. Itanium also supports mainframe environment GCOS from Groupe Bull and several IA-32 operating systems via Instruction Set Simulators. Using QuickTransit, application binary software for IRIX/MIPS and Solaris/SPARC can run via "dynamic binary translation" on Linux/Itanium. According to the Itanium Solutions Alliance, as of early 2008, over 13,000 applications are available for Itanium based systems,[45] though Sun has contested Itanium application counts in the past.[46] The ISA also supports Gelato, an Itanium HPC user group and developer community that ports and supports open source software for Itanium.[47]

The software requirements for Itanium were criticized by Donald Knuth who said: "... The Itanium approach ... was supposed to be so terrific—until it turned out that the wished-for compilers were basically impossible to write" [1].

Competition
The Itanium 2 competes in the enterprise server and high-performance computing (HPC) markets. Itanium's major competitors include Sun Microsystems' UltraSPARC IV+, Fujitsu's SPARC64, IBM's POWER6, AMD's Opteron, and Intel's own Xeon servers.

Throughout its history, Itanium has had the best floating point performance relative to fixed-point performance of any general-purpose microprocessor. This capability is useful in HPC systems but is not needed for most enterprise server workloads.[citation needed]

By 2005, Itanium systems accounted for about 14% of HPC systems revenue, but the percentage has declined as the industry shifts to x86-64 clusters for this application.[48]

Supercomputers & HPC
An Itanium-based computer first appeared on list of the TOP500 supercomputers in November 2001.[20] The best position ever achieved by an Itanium 2 based system in the list was #2, achieved in June 2004, when Thunder (LLNL) entered the list with an Rmax of 19.94 Teraflops. In November 2004, Columbia entered the list at #2 with 51.8 Teraflops, and there was at least one Itanium-based computer in the top 10 from then until June 2007. The peak number of Itanium-based machines on the list occurred in the November 2004 list, at 84 systems (16.8%); by November 2008, this had dropped to nine systems (1.8%).[49]

New Itanium implementations in high performance computing (HPC) are primarily for research areas (such as biochemical research) where typical workloads perform better on large, shared memory systems rather than distributed clusters. These systems typically have 16 to 64 processors, and are not comparable in size to the supercomputers on the TOP500 list.

Processors Released processors
The Itanium processors show a steady progression in capability. Merced was a proof of concept. McKinley dramatically improved the memory hierarchy and allowed Itanium to become reasonably competitive. Madison, with the shift to a 130 nm process, allowed for enough cache space to overcome the major performance bottlenecks. Montecito, with a 90 nm process, allowed for a dual-core implementation and a major improvement in performance per watt. Montvale added three new features: core-level lockstep, demand-based switching and front-side bus frequency of up to 667 MHz.



Itanium




Itanium is the brand name for 64-bit Intel microprocessors that implement the Intel Itanium architecture (formerly called IA-64). Intel has released two processor families using the brand: the original Itanium and the Itanium 2. Starting November 1, 2007, new members of the second family are again called Itanium. The processors are marketed for use in enterprise servers and high-performance computing systems. The architecture originated at Hewlett-Packard (HP) and was later developed by HP and Intel together.

Itanium's architecture differs dramatically from the x86 architectures (and the x86-64 extensions) used in other Intel processors. The architecture is based on explicit instruction-level parallelism, in which the compiler makes the decisions about which instructions to execute in parallel. By contrast, other superscalar architectures depend on elaborate processor circuitry to keep track of instruction dependencies during runtime. This alternative approach helps current Itanium processors execute up to six instructions per clock cycle.

After a protracted development process, the first Itanium processor, codenamed Merced, was released in 2001, and more powerful Itanium processors have been released periodically. HP produces most Itanium-based systems, but several other manufacturers have also developed systems based on Itanium. As of 2007[update], Itanium is the fourth-most deployed microprocessor architecture for enterprise-class systems, behind x86-64, IBM POWER, and SPARC.[1] Intel released its newest Itanium, codenamed Montvale, in November 2007,[2] and has announced plans to release a quad-core Itanium processor (code-named Tukwila) to server OEMs in late 2008. Systems based on the new processor are expected to be available in early 2009,[3] more than a year later than Intel's initial projection.[4]

History Development: 1989–2001
In 1989, HP determined that reduced instruction set computer (RISC) architectures were approaching a processing limit at one instruction per cycle. HP researchers investigated a new architecture, later named explicitly parallel instruction computing (EPIC), that allows the processor to execute multiple instructions in each clock cycle. EPIC implements a form of very long instruction word (VLIW) architecture, in which a single instruction word contains multiple instructions. With EPIC, the compiler determines in advance which instructions can be executed at the same time, so the microprocessor simply executes the instructions and does not need elaborate mechanisms to determine which instructions to execute in parallel.[7] The goal of this approach is two-fold: first, to enable deeper inspection of the code to identify additional opportunities for parallel execution; and, second, to simplify processor design and reduce energy consumption by eliminating the need for runtime scheduling circuitry.

HP determined that it was no longer cost-effective for individual enterprise systems companies such as itself to develop proprietary microprocessors, so HP partnered with Intel in 1994 to develop the IA-64 architecture, which derived from EPIC. Intel was willing to undertake a very large development effort on IA-64 in the expectation that the resulting microprocessor would be used by the majority of enterprise systems manufacturers. HP and Intel initiated a large joint development effort with a goal of delivering the first product, Merced, in 1998.[7]

During development, Intel, HP, and industry analysts predicted that IA-64 would dominate in servers, workstations, and high-end desktops, and eventually supplant RISC and complex instruction set computer (CISC) architectures for all general-purpose applications. Compaq and Silicon Graphics decided to abandon further development of the Alpha and MIPS architectures respectively in favor of migrating to IA-64.[8]

Several groups developed operating systems for the architecture, including Microsoft Windows, Linux, and UNIX variants such as HP-UX, Solaris,[9] [10] [11] Tru64 UNIX,[8] and Monterey/64[12] (the latter three were canceled before reaching the market). By 1997, it was apparent that the IA-64 architecture and the compiler were much more difficult to implement than originally thought, and the delivery of Merced began slipping.[13] Technical difficulties included the very high transistor counts needed to support the wide instruction words and the large caches. There were also structural problems within the project, as the two parts of the joint team used different methodologies and had slightly different priorities. Since Merced was the first EPIC processor, the development effort encountered more unanticipated problems than the team was accustomed to. In addition, the EPIC concept depends on compiler capabilities that had never been implemented before, so more research was needed.

Intel announced the official name of the processor, Itanium, on October 4, 1999.[14] Within hours the name Itanic [15] had been coined in an online chat room, a reference to Titanic, the "unsinkable" ocean liner which sank in 1912. Itanic has since often been used by The Register,[16] Scott McNealy,[17] and others,[18][19] implying that the multibillion dollar investment in Itanium—and the tremendous early hype—would be followed by its relatively quick demise.


Quad-Core and Multi-Core Xeon



3200-series "Kentsfield"

Intel released relabeled versions of its quad-core (2x2) Core 2 Quad processor as the Xeon 3200-series (product code 80562) on 7 January 2007.[10] The 2x2 "quad-core" (dual-die dual-core[11]) comprised two separate dual-core die next to each other in one CPU package. The models are the X3210, X3220 and X3230, running at 2.13 GHz, 2.4 GHz and 2.66 GHz, respectively.[12] Like the 3000-series, these models only support single-CPU operation and operate on a 1066 MHz front-side bus. It is targeted at the "blade" market.

3300-series "Yorkfield"
Intel released relabeled versions of its quad-core (2x2) Core 2 Quad processor as the Xeon 3300-series (product code 80569) comprised two separate dual-core dies next to each other in one CPU package and manufactured in a 45 nm process. The models are the X3320, X3350, X3360 and X3370, running at 2.50 GHz, 2.66 GHz, 2.83 GHz and 3.0 GHz, respectively. The L2 cache is a unified 6 MB per die (except for the X3320 with a smaller 3 MB L2 cache per die), and a front-side bus of 1333 MHz. All models feature Intel 64 (Intel's x86-64 implementation), the XD bit, and Virtualization Technology, as well as "Demand Based Switching".

5300-series "Clovertown"
A quad-core (2x2) successor of the Woodcrest for DP segment, consisting of two dual-core Woodcrest chips in one package similarly to the dual-core Pentium D branded CPUs (two single-core chips) or the quad-core Kentsfield. The Clovertown has been usually implemented with two Woodcrest dies on a multi-chip module, with 8 MB of L2 cache (4 MB per die). Like Woodcrest, lower models use a 1066 MT/s FSB, and higher models use a 1333 MT/s FSB. Intel released Clovertown, product code 80563, on 14 November 2006[13] with models E5310, E5320, E5335, E5345, and X5355, ranging from 1.6 GHz to 2.66 GHz. The E and X designations are borrowed from Intel's Core 2 model numbering scheme; an ending of -0 implies a 1066 MT/s FSB, and an ending of -5 implies a 1333 MT/s FSB.[12] All models have a TDP of 80 W with the exception of the X5355, which has a TDP of 120 W. A low-voltage version of Clovertown with a TDP of 50 W has a model numbers L5310, L5320 and L5335 (1.6 GHz, 1.86 GHz and 2.0 GHz respectively). The 3.0 GHz X5365 arrived in July 2007, and became available in the Apple Mac Pro [6] on 4 April 2007.[7][14] The X5365 is among the fastest processors, performing up to around 38 GFLOPS in the LINPACK benchmark.

5400-series "Harpertown"
On 11 November 2007 Intel presented Yorkfield based Xeons - called Harpertown (product code 80574) - to the public.[9] This family consists of dual die quad-core CPUs manufactured on a 45 nm process and featuring 1333 MHz to 1600 MHz front-side buses, with TDP rated from 50 W to 150 W depending on the model. These processors fit in the LGA771 socket. All models feature Intel 64 (Intel's x86-64 implementation), the XD bit, and Virtualization Technology, as well as the "Demand Based Switching", except the E5405, which lacks this feature. The supplementary character in front of the model-number represents the thermal rating: an L depicts an TDP of 50 W, an E depicts 80 W whereas a X is 120 W TDP or above. The speed of 3.00 GHz comes as four models, two models with 80 W TDP two other models with 120 W TDP with 1333 MHz or 1600 MHz front-side bus respectively. The fastest Harpertown is the X5492 whose TDP of 150 W is higher than those of the Prescott-based Xeon DP but having twice as many cores. (This CPU is also sold under the name "Core 2 Extreme QX9775" for use in the Intel SkullTrail system.)

Intel 1600 MHz front-side bus Xeon processors will drop into the Seaburg chipset whereas several mainboards featuring the Intel 5000/5200-chipset are enabled to run the processors with 1333 MHz front-side bus processors. Seaburg features support for dual PCIe 2.0 x16 slots and up to 128 GB of memory.

7300-series "Tigerton"
The 7300 series, codenamed Tigerton (product code 80565) is a four-socket (packaged in Socket 604) and greater capable quad-core processor, consisting of two dual core Core2 architecture silicon chips on a single ceramic module, similar to Intel's Xeon 5300 series Clovertown processor modules. It was announced on 5 September 2007 [10], and is currently shipping.

The 7300 series uses Intel's Caneland (Clarksboro) platform.

Intel claims the 7300 series Xeons offer more than twice the performance and more than three times the performance per watt as Intel's previous generation 7100 series. The 7300 series' Caneland chipset provides a point to point interface allowing the full front side bus bandwidth per processor.

The 7xxx series is aimed at the large server market, supporting configurations of up to 32 CPUs per host.

7400-series "Dunnington"
Dunnington[17] - the last CPU of the Penryn generation and Intel's first multi-core (above two) die - features a single-die six- (or hexa-) core design with three unified 3 MB L2 caches (resembling three merged 45 nm dual-core Wolfdale dies), and 96 KB L1 cache (Data) and 16 MB of L3 cache. It features 1066 MHz FSB, fits into the Tigerton's mPGA604 socket, and is compatible with the Caneland chipset. These processors support DDR2-1066 (533 MHz), and have a maximum TDP below 130 W. They are intended for blades and other stacked computer systems. Availability is scheduled for the second half of 2008. It will be followed shortly by the Nehalem microarchitecture.



Dual-Core Xeon






"Paxville DP"
The first dual-core CPU branded Xeon, codenamed Paxville DP, product code 80551, was released by Intel on 10 October 2005. Paxville DP had NetBurst architecture, and was a dual-core equivalent of the single-core Irwindale (related to the Pentium D branded "Smithfield"") with 4 MB of L2 Cache (2 MB per core). The only one Paxville DP model released ran at 2.8 GHz, featured an 800 MT/s front side bus, and was produced using a 90 nm process.
7000-series "Paxville MP"
An MP-capable version of Paxville DP, codenamed Paxville MP, product code 80560, was released on 1 November 2005. There are two versions: one with 2 MB of L2 Cache (1 MB per core), and one with 4 MB of L2 (2 MB per core). Paxville MP, called the dual-core Xeon 7000-series, was produced using a 90 nm process. Paxville MP clock ranges between 2.67 GHz and 3.0 GHz (model numbers 7020-7041), with some models having a 667 MT/s FSB, and others having an 800 MT/s FSB.
LV (ULV), "Sossaman"
On 14 March 2006, Intel released a dual-core processor codenamed Sossaman and branded as Xeon LV (low-voltage). Subsequently an ULV (ultra-low-voltage) version was released. The Sossaman was a low-/ultra-low-power and double-processor capable CPU (like AMD Quad FX), based on the "Yonah" processor, for ultradense non-consumer environment (i.e. targeted at the blade-server and embedded markets), and it was rated at a thermal design power (TDP) of 31 W (LV: 1.66 GHz and 2 GHz ) and 15 W (ULV: 1.66 GHz)[2]. As such, it supported most of the same features as earlier Xeons: Virtualization Technology, 667 MT/s front side bus, and dual-core processing, but it did not support 64-bit operations, so it could not run 64-bit-only server software, such as Microsoft Exchange Server 2007, and therefore it was limited to only 16 GB of memory. A planned successor, codenamed "Merom MP" was to be a drop-in upgrade to allow Sossaman-based servers to upgrade to 64-bit capability. However, this was abandoned in favour of low-voltage versions of the Woodcrest LV processor leaving the Sossaman at a dead-end with no planned upgrades.
5000-series "Dempsey"
On 23 May 2006, Intel released the dual-core CPU (Xeon branded 5000 series) codenamed Dempsey (product code 80555). Released as the Dual-Core Xeon 5000-series, Dempsey is a NetBurst architecture processor produced using a 65 nm process, and is virtually identical to Intel's "Presler" Pentium Extreme Edition, except for the addition of SMP support, which lets Dempsey operate in dual-processor systems. Dempsey ranges between 2.50 GHz and 3.73 GHz (model numbers 5020-5080). Some models have a 667 MT/s FSB, and others have a 1066 MT/s FSB. Dempsey has 4 MB of L2 Cache (2 MB per core). A Medium Voltage model, at 3.2 GHz and 1066 MT/s FSB (model number 5063), has also been released. Dempsey also introduces a new interface for Xeon processors: Socket J, also known as LGA 771.

5100-series "Woodcrest"
On 26 June 2006, Intel released the dual-core CPU (Xeon branded 5100 series) codenamed Woodcrest (product code 80556); it was the first Intel Core microarchitecture processor to be launched on the market. It is a server and workstation version of the Intel Core 2 processor. Intel claims that it provides an 80% boost in performance, while reducing power consumption by 20% relative to the Pentium D.

Most models have a 1333 MT/s FSB, except for the 5110 and 5120, which have a 1066 MT/s FSB. The fastest processor (5160) operates at 3.0 GHz. All Woodcrests use LGA 771 and all except two models have a TDP of 65 W. The 5160 has a TDP of 80 W and the 5148LV (2.33 GHz) has a TDP of 40 W. The previous generation Xeons had a TDP of 130 W. All models support Intel 64 (Intel's x86-64 implementation), the XD bit, and Virtualization Technology, with the "Demand Based Switching" power management option only on Dual-Core Xeon 5140 or above. Woodcrest has 4 MB of shared L2 Cache.

7100-series "Tulsa"
Released on 29 August 2006,[3] the 7100 series, codenamed Tulsa (product code 80550), is an improved version of Paxville MP, built on a 65 nm process, with 2 MB of L2 cache (1 MB per core) and up to 16 MB of L3 cache. It uses Socket 604 [1]. Tulsa was released in two lines: the N-line uses a 667 MT/s FSB, and the M-line uses an 800 MT/s FSB. The N-line ranges from 2.5 GHz to 3.5 GHz (model numbers 7110N-7150N), and the M-line ranges from 2.6 GHz to 3.4 GHz (model numbers 7110M-7140M). L3 cache ranges from 4 MB to 16 MB across the models.[4]
7200-series "Tigerton"
The 7200 series, codenamed Tigerton (product code 80564) is an MP-capable processor, similar to the 7300 series, but, in contrast, only one core is active on each silicon chip, and the other one is turned off (blocked), resulting as a dual-core capable processor.

3000-series "Conroe"
The 3000 series, codenamed Conroe (product code 80557) dual-core Xeon (branded) CPU,[5] released at the end of September 2006, was just a rebranded version of the Intel's mainstream Conroe, otherwise branded as Core 2 Duo (for consumer desktops). Unlike most Xeon processors, they only supported single-CPU operation. They use Socket T (LGA775), operate on a 1066 MHz front-side bus, support Enhanced Intel Speedstep Technology and Intel Virtualization Technology but do not support Hyper-Threading. Intel Processors with a number ending in "5" have a 1333 MT/s FSB.[6]

3100-series "Wolfdale"
The 3100 series, codenamed Wolfdale (product code 80570) dual-core Xeon (branded) CPU, was just rebranded version of the Intel's mainstream Wolfdale featuring the same 45 nm process and 6 MB of L2 cache. Unlike most Xeon processors, they only support single-CPU operation. They use Socket T (LGA775), operate on a 1333 MHz front-side bus, support Enhanced Intel Speedstep Technology and Intel Virtualization Technology but do not support Hyper-Threading.
5200-series "Wolfdale DP"
On 11 November 2007, Intel released the dual-core CPU (Xeon branded 5200 series) codenamed Wolfdale DP (product code 80573),[8] it is built on a 45 nm process like the desktop Core 2 Duo Wolfdale and the Xeon-SP Wolfdale, featuring Intel 64 (Intel's x86-64 implementation), the XD bit, and Virtualization Technology, it is unclear whether the "Demand Based Switching" power management will be available on the L5238 which is scheduled for April 2008.[9] Wolfdale has 6 MB of shared L2 Cache.

Xeon





The Xeon brand refers to many families of Intel's x86 multiprocessing CPUs – for dual-processor (DP) and multi-processor (MP) configuration on a single motherboard targeted at non-consumer markets of server and workstation computers, and also at blade servers and embedded systems. The Xeon brand has been maintained over several generations of x86 and x86-64 processors. Older models added the Xeon moniker to the end of the name of their corresponding desktop processor, but more recent models used the name Xeon on its own. The Xeon CPUs generally have more cache than their desktop counterparts in addition to multiprocessing capabilities. Intel's (non-x86) IA-64 processors are called Itanium, not Xeon.

Pentium II Xeon
The first Xeon branded processor was released in 1998, named the Pentium II Xeon (codenamed "Drake"), as the replacement of the Pentium Pro. It was based on the 0.25 µm "Deschutes" core (P6 microarchitecture) branded Pentium II (sharing its 80523 product code), used either a 440GX (a dual-processor workstation chipset) or 450NX (quad-processor, or oct with additional logic) chipset, and differed from the Pentium II desktop CPU (Deschutes) in that its off-die L2 cache ran at full speed. It also used a larger slot known as slot 2. Cache sizes were 512 KB, 1 MB, and 2 MB, and it used a 100 MT/s front side bus (FSB)[1].

Pentium III Xeon
In 1999, the Pentium II Xeon was replaced by the Pentium III Xeon. Reflecting the incremental changes from the Pentium II "Deschutes" core to the Pentium III "Katmai" core, the first Pentium III Xeon, named "Tanner", was just like its predecessor except for the addition of Streaming SIMD Extensions (SSE) and a few cache controller improvements. The second version, named "Cascades", was based on the Pentium III "Coppermine" core. The "Cascades" Xeon used a 133 MT/s bus and relatively small 256 KB on-die L2 cache resulting in almost the same capabilities as the Slot 1 Coppermine processors, which were capable of dual-processor operation but not quad-processor operation. To improve this situation, Intel released another version, officially also named "Cascades", but often referred to as "Cascades 2 MB". That came in two variants: with 1 MB or 2 MB of L2 cache. Its bus speed was fixed at 100 MT/s, though in practice the cache was able to offset this. Product codes for Tanner and Cascades mirrored that of Katmai and Coppermine; 80525 and 80526 respectively.

Xeon (DP) & Xeon MP (32-bit)
Foster
In mid-2001, the Xeon brand was introduced ("Pentium" was dropped from the name). The initial variant that used the new NetBurst architecture, "Foster", was slightly different from the desktop Pentium 4 ("Willamette"). It was a decent chip for workstations, but for server applications it was almost always outperformed by the older Cascades 2 MB core and AMD's Athlon MP. Combined with the need to use expensive Rambus Dynamic RAM, the Foster's sales were somewhat unimpressive.

At most two Foster processors could be accommodated in a symmetric multiprocessing (SMP) system built with a mainstream chipset, so a second version (Foster MP) was introduced with a 1 MB L3 cache and the Jackson Hyper-Threading capacity. This improved performance slightly, but not enough to lift it out of third place. It was also priced much higher than the dual-processor (DP) versions. The Foster shared the 80528 product code with Willamette.

Prestonia
In 2002 Intel released a 130 nm version of Xeon branded CPU, codenamed "Prestonia". It supported Intel's new Hyper-Threading technology and had a 512 KB L2 cache. This was based on the "Northwood" Pentium 4 core. A new server chipset, E7500 (which allowed the use of dual-channel DDR SDRAM) was released to support this processor in servers, and soon the bus speed was boosted to 533 MT/s (accompanied by new chipsets: the E7501 for servers and the E7505 for workstations). The Prestonia performed much better than its predecessor and noticeably better than Athlon MP. The support of new features in the E75xx series also gave it a key advantage over the Pentium III Xeon and Athlon MP branded CPUs (both stuck with rather old chipsets), and it quickly became the top-selling server/workstation processor.

Gallatin
Subsequent to the Prestonia was the "Gallatin", which had an L3 cache of 1 MB or 2 MB. Its Xeon MP version also performed much better than the Foster MP, and was popular in servers. Later experience with the 130 nm process allowed Intel to create the Xeon MP branded Gallatin with 4 MB cache. The Xeon branded Prestonia and Gallatin were designated 80532, like Northwood.

Xeon (DP) & Xeon MP (64-bit)
Due to a lack of success with Intel's Itanium and Itanium 2 processors, AMD was able to introduce x86-64, a 64-bit extension to the x86 architecture. Intel followed suit by including EM64T (almost identical) in the 90 nm version of the Pentium 4 ("Prescott"), and a Xeon version codenamed "Nocona" was released in 2004. Released with it were the E7525 (workstation), E7520 and E7320 (both server) chipsets, which added support for PCI Express, DDR-II and Serial ATA. The Xeon was noticeably slower than AMD's Opteron, although it could be faster in situations where Hyper-Threading came into play.

A slightly updated core called "Irwindale" was released in early 2005, with twice the L2 cache of Nocona and able to reduce its clockspeeds during low processor demand. However, independent tests showed that AMD's Opteron still outperformed Irwindale.

64-bit Xeon MPs were introduced in April 2005. The cheaper "Cranford" was an MP version of Nocona, while the more expensive "Potomac" was a Cranford with 8 MB of L3 cache. All these Prescott-derived Xeons have the product code 80546.

Intel Centrino 2 Processor Technology For Mobile Computing



The best notebooks have Intel Centrino 2 processor technology inside

Intel’s NEWEST and BEST performing notebook technology includes:

  • Up to 50% faster performance when multitasking
  • Up to 2X greater range and up to 5X better wireless performance
  • Designed for the longest possible battery life
  • Up to 90% faster performance on intensive multimedia applications like HD video encoding
Unsurpassed mobile computing performance

Get performance that meets the processing needs of the most demanding multitasker, whether you’re editing photos, watching HD video, or gaming. With a minimum of 3MB Smart Cache and 1066MHz Front Side Bus, Intel Centrino 2 processor technology delivers performance gains of up to 50 percent. No more waiting for your notebook to catch up!

Break free with longer battery life

To keep you unplugged longer, we’ve incorporated Deep Power Down and other energy-efficient capabilities into Intel Centrino 2 processor technology. So you won’t need to search for power outlets at every stop along your travels.

Like you’ve never seen or heard before

With HD video and audio decoding, you can access and enjoy more exciting media content than ever while on-the-go.
The future of wireless today

Operate wireless with up to five times better wireless performance, including faster Web browsing, file transfers and rich media downloads.Go from office to park bench to cafe and back home again without missing an online minute.

Enhanced digital media experience

With Intel Graphics Technology, you’re choosing a smarter, integrated solution for your visual needs. You’ll experience the hottest media in razor-sharp 1080p HD with crystal-clear images and brilliant color. And you’ll enjoy more than three times better graphics performance for a rich, realistic and immersive experience while you’re gaming or watching video.

Go thinner and lighter and still enjoy every feature of a standard size Intel Centrino 2-based notebook.

Intel helps puts lighter, sleeker notebooks at your fingertips. How? By making their powerful Intel Centrino 2 processor technology 50 percent smaller. So go thin and unplug with Intel’s smallest Centrino 2 processor technology.

Intel Core2 Extreme Mobile Processor For Mobile Gaming & Multimedia



Extreme Mobile Gaming & Multimedia

Get extreme processing power for mobile gaming and multimedia with the Intel Core2 Extreme mobile processor, the world’s highest performing quad-core and dual-core mobile processors.

Extreme Mobile Gaming & Multimedia

Get extreme processing power for mobile gaming and multimedia with the Intel Core2 Extreme mobile processor, the world’s highest performing quad-core and dual-core mobile processors.

Quad-core brings desktop performance to your notebook

  • The world’s highest performing quad-core mobile processor provides the extreme levels of processing power you need to run multiple, highly-threaded applications simultaneously.
  • Compared to its dual-core version, the quad-core delivers up to 50% faster HD video editing and encoding.
  • Accelerate your multimedia applications and 3D gaming with up to 2.53 GHz clock speed, 1066 MHz Front Side Bus, and 12MB shared L2 cache.

Dual-core delivers for gamers
  • The world’s highest performing dual-core mobile processor delivers revolutionary performance levels for extreme gaming and multimedia.
  • Experience the most intense 3D on leading multi-threaded games and enjoy up to 3.06 GHz clock speed, 1066 MHz Front Side Bus, and 6MB shared L2 cache.
  • Get optimum performance while extending your battery life with notebook-friendly 44W TDP and advanced power-management features.

Intel Core2 Duo Processor For Notebooks


Outstanding energy-efficient performance and multimedia power.

Experience energy-efficient performance with the Intel Core2 Duo mobile processor. Become a multitasking master with the ability to run multiple applications simultaneously without slowing down. You’ll enjoy outstanding performance when encoding your HD videos or running other intensive multimedia applications.

The power to multitask

Get revolutionary energy-efficient performance with next-generation hafnium-infused 45nm technology and more smart cache allowing you to multitask twice as fast.

Energy-efficient performance

Stay unplugged longer with the enhanced power and energy efficiency technologies.

Thinner, lighter notebooks

Enhanced Intel Core micro architecture enables outstanding performance with thin and light notebook designs.
Rich video quality

Intel Clear Video Technology, a built-in feature of the latest Intel Graphics, lets you enjoy an enhanced video experience with smoother playback. And with new Intel HD Boost, you’ll experience up to 50 percent faster performance for intensive multimedia applications like video encoding.

The ultimate Windows Vista experience

With Intel Graphics, you can enjoy the full spectrum of visual advancements offered by Windows Vista Home Premium edition.

Pre-Black Friday 2008 at Amazon: 7-in Asus Eee PC 4G Surf for $257.20

Right now, if you check out the current price of 7-in Asus Eee PC 4G Surf in different retailers, you can not find any price less than $300. But Amazon is offering this Netbook for the great price of $257.20. Of course it is one of Amazon’s Pre-Black Friday 2008 offers.

The Pure White Netbook comes with 7-Inch wide color TFT LCD with an 800 x 480-pixel resolution (WXGA)Display, 900MHz Intel Mobile Processor, 512 MB RAM, shock-protection 4 GB SSD Hard Drive, and Linux Preloaded OS.

Regarding connectivity and I/O, the min laptop features Wi-Fi LAN (802.11b/g), wired Fast Ethernet connectivity, three USB 2.0 ports, a VGA output, headphone and microphone jacks, and a Secure Digital (SD) memory card slot.

Cyber Monday 2008 Deals: Acer Aspire One AOA110-1113 for just $249.99 at NewEgg

To be honest with you, I felt that it is one of the top deals of Cyber Monday 2008 at Newegg.com. A laptop for just $249.99! It is too good to be true. Well, the regular price is $299.99. Thus, there is a $50 discount just for Cyber Monday 2008. The OS is Linux based and the processor is Intel Atom N270(1.60GHz). No problem for me. I know that some users may think that it is not powerful enough. Yes, I agree with you but then think of the price again, please.

Display is 8.9", 512MB RAM and 8GB Solid State Drive. Don’t feed discouraged because Acer Aspire One AOA110-1113 weight is just 2.19 lbs. and there is built in camera. I liked the thing that it has 3 USB ports and LAN.

What I feel is that it is good for basic computer usage. Of course, I know that many consumers may not like it for various reasons and I agree with them. However, if you don’t have a big purse this holiday season then Acer Aspire One AOA110-1113 can be the right thing for you.

A First Benchmark: Atom CPU vs. VIA Isaiah vs. Celeron M vs, VIA C7

There are many consumers or computer geeks that like me are very curious to know which of low-cost or budget processors all at the same clock speed (including upcoming Atom CPU, upcoming Via Isaiah, current Celeron M and current VIA C7) will deliver better performance.

OIF course we have to wait more that the upcoming processors come to the hand of experts but the German site Eee PC News has done the first test and has shown the result of this quick comparison in its website.

Intel Pentium Dual-Core Processor For Notebooks



Enter the world of multitasking with dual-core performance.

The Intel Pentium dual-core processor gives you the processing power you need to multitask with ease. Download music, organize digital photos and run office software—all at the same time. Intel Pentium dual-core lets you do extraordinary things with everyday computing.

Expand your options

Two processing cores deliver superior performance when multitasking several applications at once.

Fortify your defences

The Intel Pentium dual-core processor comes with built-in Execute Disable Bit technology, which helps keep your notebook safe from viruses, worms, and other malicious attacks.

Less energy consumption

Chipset advancements provide increased energy efficiency with less drain and longer battery life.

Self-adjusting frequency

Intel SpeedStep technology allows your system to dynamically adjust processor voltage and core frequency to decrease power consumption and heat production.

AMD Athlon Processor

AMD Athlon Processor Overview
The AMD Athlon processor is the first Windows-compatible 64-bit PC processor. The AMD Athlon processor runs on AMD64 technology, a revolutionary technology that allows the processor to run 32-bit applications at full speed while enabling a new generation of powerful 64-bit software applications. Advanced 64-bit operating systems designed for the AMD64 platform from Microsoft, Red Hat, SuSE, and TurboLinux have already been announced.

With the introduction of the AMD Athlon processor, AMD provides customers a solution that can address their current and future computing needs. As the first desktop PC processor to run on the AMD64 platform, the AMD Athlon processor helps ensure superior performance on today’s software with readiness for the coming wave of 64-bit computing. With AMD64 technology, customers can embrace the new capabilities of 64-bit computing on their own terms and achieve compatibility with existing software and operating systems.

Enhanced Virus Protection with Windows XP Service Pack 2
With a unique combination of hardware and software technologies that offer you an added layer of protection, certain types of viruses don't stand a chance. The AMD Athlon processor features Enhanced Virus Protection, when support by the OS, and can help protect against viruses, worms, and other malicious attacks. When combined with protective software, Enhanced Virus Protection is part of an overall security solution that helps keep your information safer.

Industry-leading performance for today’s software
It 's not just about email, Web browsing and word processing anymore. The AMD Athlon processor gives you full-throttle performance to go wherever your digital world takes you. Whether you're watching videos, ripping and playing music, or playing games, AMD64 performance helps you to fully enjoy any multimedia experience with a “you are there” reality. The revolutionary architecture of the AMD Athlon processor enables industry-leading performance to help maximize productivity and deliver a true-to-life digital entertainment experience. HyperTransport technology can increase overall system performance by removing I/O bottlenecks, increasing system bandwidth, and reducing system latency. A fully integrated DDR memory controller helps speed access to memory by offering the processor a direct connection to the main memory. As a result, end users can enjoy quicker application loading and extraordinary application performance.

With 3DNow! Professional technology and support for SSE3, the AMD Athlon processor has more ways to accelerate multimedia applications, enabling stellar performance when working with audio, video and photography software. For a superior experience with high-speed Internet, the AMD Athlon processor combines high-speed memory access and I/O connectivity to help ensure that end users can fully take advantage of a broadband connection to streaming video and audio, and a riveting online gaming experience.

Ready for the 64-bit future
The AMD Athlon processor is designed for people who want to stay at the forefront of technology and for those who depend on their PCs to keep them connected, informed, and entertained. Systems based on AMD Athlon processors are able to deliver leading-edge performance for demanding productivity and entertainment software today and in the future.

With AMD64 technology, the AMD Athlon processor is fully compatible with existing software, while enabling a seamless transition to 64-bit applications. Both 32- and 64-bit applications can run virtually simultaneously and transparently on the same platform. AMD64 technology enables new, cinematic computing experiences and capabilities, in addition to increased performance. AMD64 technology allows end users to take advantage of new innovations such as real-time encryption, more life-like games, accurate speech interfaces, cinema-quality graphic effects, and easy-to-use video and audio editing.

Protect investments with a technically superior PC processor
The AMD Athlon processor is the world’s most technically advanced PC processor and the first Windows-compatible 64-bit PC processor. Advanced technologies in the AMD Athlon processor include:

  • AMD64 technology which doubles the number of processor registers and dramatically increases the system memory addressability
  • Enhanced multimedia instructions support including 3DNow! Professional technology and SSE2/3
  • With up to a 2000 MHz system bus using HyperTransport technology with up to 14.4 GB/sec total processor-to-system bandwidth
  • An integrated memory controller with peak memory bandwidth of up to 6.4 GB/sec, supporting PC3200, PC2700, PC2100, or PC1600 DDR SDRAM
  • Native execution of 32-bit software, allowing today’s PC software to provide leading-edge performance while enabling a seamless migration to 64-bit software.

The combination of these innovations and features provides customers with performance they need along with tremendous flexibility. Customers can experience outstanding performance running today’s applications and prepare for the next generation of software without having to upgrade or change hardware. For business customers, this extends system life cycles, simplifies technology transition and reduces total cost of ownership.

Purchase with confidence
The AMD Athlon processor is the only industry standard x86 processor with the ability to move beyond the limits of 32-bit computing. The AMD Athlon processor is compatible with Microsoft Windows XP and tens of thousands of PC applications that people around the world use every day. The award-winning AMD Athlon processor won over 100 industry accolades and was the first 1GHz PC processor. Now, the AMD Athlon processor reaches a new milestone by building a path to 64-bit computing for millions of PC users.

Intel Celeron Processor For Notebooks



A lifetime of computing starts here

Everyone has different computing needs. And there’s no better way to meet your "everyday" needs than with the Intel® Celeron® processor. Stay connected with friends through email, track your finances and get your work done while you’re on the move.

Dual-core

Enjoy dual-core performance for everyday multitasking.

The single scene

Get peace of mind with a reliable and affordable solution.

Strengthen your defences

Intel Celeron processors come with built-in Execute Disable Bit technology, which helps keep your notebook safe from viruses, worms and other attacks.

Less energy consumption

Chipset advances provide increased energy efficiency, with less drain and longer battery life.

Proven technology

Intel has a proven track record as the leading manufacturer of computer processors for over 30 years.

AMD Sempron Processor

AMD Sempron Processor Overview
The AMD Sempron processor performs at the top of its class when running the home and business applications most. The AMD Sempron processor’s full-featured capabilities can include AMD64 Technology, HyperTransport technology, up to 256KB total high-performance cache, One 16-bit/16-bit link up to 1600MHz full duplex system bus technology, and an integrated DDR2 memory controller.

The AMD Sempron processor provides the productivity enhancing performance you need for your everyday applications. It runs over 60,000 of the world’s most popular applications, so you can enjoy solid performance. With 35 years of design and manufacturing experience and shipments of more than 240 million PC processors, you can count on AMD to provide reliable solutions for your home or business.

Affordable - Performance

  • The AMD Sempron processor performs at the top of its class on the home and business applications that you need and use most.
  • The AMD Sempron processor is designed for day-to-day computing and beyond.
  • Full-Featured to Improve your Computing Experience
  • The AMD Sempron processor lets you enjoy a dynamic Internet experience with smooth streaming video and audio.
  • The AMD Sempron processor saves you time and effort; enabling your system to boot and load your applications quickly.
  • Applications that allow you to communicate with family, friends and colleagues will run smoothly with the AMD Sempron processor.

The AMD Sempron processor’s advanced architectural features help ensure affordable performance and full-featured capability. These features include:

  • AMD64 Technology
  • HyperTransport technology
  • Up to 256KB total high-performance, full-speed cache
  • One 16-bit/16-bit link up to 1600MHz full duplex system bus technology,
  • Integrated DDR2 memory controller on certain models
  • Built-in security with Enhanced Virus Protection that works with Microsoft
Windows XP SP2 to help protect against viruses, worms, and other malicious attacks. When combined with protective software, Enhanced Virus Protection is part of an overall security solution that helps keep your information safer.

Enjoy full compatibility with the tools you use daily.
The AMD Sempron processor is designed to run more than 60,000 of the most popular software applications, so you can enjoy reliable performance for a wide variety of computing needs. And since the AMD Sempron processor is compatible with leading PC peripherals, it helps keep everything running smoothly.

Get more value from your PC.
The AMD Sempron processor is ideal for families, students and other budget-conscious or entry-level computer buyers. It includes the right set of features you need for day-to-day computing, and gives you more power for your money than other similar processors. This means you get a PC configured with better components such as CD drives, graphics capabilities, and more.

Reliability from an Industry Leader

  • AMD is an industry leader that is dedicated to enabling you to get the job done at work or at play.
  • AMD is constantly striving to find the right solutions for you and your home or business needs.
  • AMD’s superior quality and track record have long been recognized by a number of the industry’s top publications, organizations and high-tech experts. AMD products, technology, manufacturing, facilities, executives and corporate and community programs have earned a multitude of awards and recognition over the years.

Intel Celeron Processor For Desktops

An everyday computer processor you can get excited about every day

Everyone has different computing needs. And there’s no better way to meet your "everyday" needs than with the Intel Celeron processor. Stay connected with friends through email, track your finances and get your work done. Begin your computing journey with an Intel processor built on 30 years of experience as the leading manufacturer of computer processing.

Enjoy the quiet

Intel Celeron processors single-core and dual-core processing creates less heat within your machine, which means less fan noise for quieter computing.

Energy-efficient dual-core

The Intel Celeron dual-core processor delivers energy-efficient dual-core performance.

Fortify your defences

The Intel Celeron processor comes with built-in Execute Disable Bit technology, which helps keep your notebook safe from viruses, worms and other malicious attacks.

Feel confident

Intel has a proven track record as the leading manufacturer of computer processors for over 30 years.

AMD Athlon X2 Dual-Core Processor

Take multi-tasking to a whole new level with the AMD Athlon X2 dual-core Processor
AMD Athlon X2 dual-core processors put the power of dual-core technology on the desktop. Dual-core processors contain two processing cores, residing on one chip, that perform calculations on two streams of data to increase efficiency and speed while running multiple programs and the new generation of multi-threaded software. For end-users this means a significant increase in response and performance when running multiple applications simultaneously.

Better Multi-Tasking Means Increased Office Productivity

Productivity in today’s workplace requires smooth, efficient and seamless multi-tasking. AMD Athlon X2 dual-core processors deliver TRUE multi-tasking, allowing users to switch from one program to another without always pausing for the computer to catch up and reducing annoying processing pauses.

Setting the Pace in Digital Media Digital media software demands simultaneous processing of data streams, the perfect use for the incredible multi-tasking power of AMD64 dual-core technology. Dual-core technology is like having two processors working together, each one taking care of different applications, so power-users can actually experience greater performance when multiple applications are running. Digital media enthusiasts can usher in the next generation of digital media software for amazing high-definition video and photo editing, content creation, and audio mixing. With an AMD Athlon X2 dual-core processor, your PC can perform up to 80% faster than an AMD Athlon 4000+ processor on the latest power-hungry digital media software applications.

Get more Power using less Power

Energy-efficient AMD processors with Cool‘n’Quiet technology enable smaller, sleeker, more energy-efficient PC’s. In March 2005, the U.S. Environmental Protection Agency (EPA) awarded Cool‘n’Quiet technology special recognition for the advancement of energy-efficient computer technologies. AMD expects that systems built using energy-efficient AMD desktop processors can meet, and in many instances, exceed the new system requirements from the EPA’s ENERGY STAR Version 4 computer specification, effective July 20, 2007.

All the Proven Benefits of AMD64 Technology

Enhanced Virus Protection with Windows XP Service Pack 2 and VistaTM Enhanced Virus Protection is a feature enabled by AMD64 technology. Enhanced Virus Protection in conjunction with modern operating systems can help prevent the spread of certain viruses, like MSBlaster and Slammer to significantly reduce the cost and down-time associated with similar viruses and improve the protection of computers and personal information against certain PC viruses1.

AMD Athlon Processor Architecture Performance

HyperTransport technology can increase overall system performance by reducing I/O bottlenecks, increasing system bandwidth, and reducing system latency. A fully integrated memory controller helps speed access to memory by giving the processor a direct connection to the main memory. As a result, end users can enjoy quicker application loading and extraordinary application performance.

Ready for the 64-bit future

Like all the processors in the AMD64 family, AMD Athlon X2 dual-core processors are designed for people who want to stay at the forefront of technology and for those who depend on their PCs to keep them connected, informed, and entertained. Systems based on AMD64 processors can deliver leading-edge performance for demanding productivity and entertainment software today and in the future.

With AMD64 technology, AMD Athlon X2 dual-core processors are fully compatible with existing software, while enabling a seamless transition to 64-bit applications. Both 32- and 64-bit applications can run simultaneously and transparently on the same platform. AMD64 technology enables new, cinematic computing experiences and capabilities, in addition to increased performance. AMD64 technology allows end users to take advantage of new innovations such as real-time encryption, more life-like games, accurate speech interfaces, cinema-quality graphic effects, and easy-to-use video and audio editing.

Purchase with Confidence

Founded in 1969, AMD has shipped more than 240 million PC processors worldwide. Customers can depend on AMD64 processors and AMD for compatibility and reliability. AMD processors undergo extensive testing to help ensure compatibility with Microsoft Windows XP, Vista, Windows NT, Windows 2000, as well as Linux and other PC operating systems. AMD works collaboratively with Microsoft and other ecosystem partners to achieve compatibility of AMD processors and to expand the capability of software and hardware products leveraging AMD64 technology. AMD conducts rigorous research, development, and validation to help ensure the continued integrity and performance of its products.

Intel Pentium Dual-Core Processor For Desktop

Enter the world of multitasking with dual-core performance.

Get the processing power you need to multitask with ease. Download music, organize digital photos and run office software all at the same time. The Intel Pentium dual-core processor lets you do extraordinary things with everyday computing.

Expand your options

Two processing cores deliver superior performance when multitasking several applications.

Unlock efficient performance

Enjoy increased overall performance without increasing power consumption, with built in Intel Intelligent Power Capability.
Fortify your defences

The Intel Pentium processor comes with built-in Execute Disable Bit technology, which helps keep your PC safe from viruses, worms, and other malicious attacks.
Keep it quiet

Intel SpeedStep Technology allows your system to dynamically adjust processor voltage and core frequency to decrease power consumption and heat production. Less heat means less fan noise.

Intel Atom Processor For Mobile Internet Devices

Unleash the best Internet experiences on your Mobile Internet Device when you’ve got:

No need to settle for less from your wireless handheld computer when you've got:

  • Blazing performance for stunning video streaming/playback
  • Amazing battery life
  • Integrated wireless to connect when and where you want
All in the palm of your hand

Groundbreaking silicon design and new hafnium-based micro-circuitry enables blazing-fast performance and amazing video streaming/playback in small wireless handheld devices, making it easy to take an amazing Internet experience along with you – on a device that can fit in your pocket.

Breathtaking graphics

Forget what you think you know about handheld computers. With the Intel Atom processor, you’ll see beautiful graphics and stunning video that blows away typical Internet devices. There’s no need to settle for anything less than a full Internet experience.

Long battery life keeps you entertained and productive

Power-efficient design enables extended battery life so you can keep on surfing, blogging, listening to music, watching video and communicating with the world as you move through your day.

Reliable built-in wireless

Maximize your Internet device’s potential by staying connected whether you’re watching a movie at home, emailing from a cafe or chatting on a social networking site while on vacation. Devices with optional GPS functionality let you access location-specific information so you can meet up with your friends and track down reviews of nearby restaurants.

Intel Atom Processor For netbooks



Simple devices for the Internet and email.

The Intel Atom processor serves as the brain for a range of simple, compact devices designed for the Internet called net books. The Intel Atom processor delivers the performance needed to enjoy popular activities like streaming videos or music, emailing, web surfing or instant messaging. Whether you’re at home, traveling, or hanging out at a cafe, you can enjoy your favorite online activities.

Designed to be compact in size

Based on a groundbreaking low-power microarchitecture, the Intel Atom processor powers Internet devices designed to go where you go. Sometimes all you want is to go online to keep in touch with friends or follow your favorite Web sites. Netbooks with the Intel Atom processor deliver convenience and flexibility for a good Internet experience.

Empowering your Internet lifestyle

The Intel Atom processor was specifically engineered to deliver the performance you need to keep surfing, blogging, listening to music, watching video or communicating with the world as you move through your day. And the Intel Atom processor’s low-power design enables extended battery life so you can stay online and on the go longer.
All of the Internet, none of the baggage
Perfect for when you want to take Internet capabilities with you and leave the rest behind. Whether you want a companion machine dedicated to online activities or an easy-to-use device for letting your family explore the Web, the Intel Atom processor makes those Internet activities accessible.

AMD Phenom X4 9000 Series

Quad-Core Processors & AMD PhenomX3 8000 Series Triple-Core Processors


INCREDIBLE PERFORMANCE

The ultimate megatasking experience. Featuring true multi-core design and award-winning AMD64 technology with Direct Connect Architecture, AMD Phenom processors deliver the ultimate megatasking experience by providing direct and rapid information flow between processor cores, main memory, and graphics and video accelerators. AMD Phenom processors have the technology to break through the most challenging processing loads. AMD Phenom processors feature low latency access to main memory for amazingly rapid response and phenomenal system performance. AMD Phenom processors were designed for megatasking—running multiple, multi-threaded applications. Surge through the most demanding processing loads, including advanced multitasking, critical business productivity, advanced visual design and modeling, serious gaming, and visually stunning digital media and entertainment.

Phenomenal performance with advanced processor design. The AMD Phenom processors are the most advanced processors for true multitasking with true quad-core design. Don’t get bogged down by non-native quad-core processors and obsolete front side bus architectures. With an integrated memory controller and shared L3 cache, AMD Phenom processors have low-latency access to main memory for amazingly rapid system response and phenomenal system performance.

Blast through performance bottlenecks. All AMD Phenom processors feature AMD64 with Direct Connect Architecture to blast through performance bottlenecks. Award winning HyperTransport 3.0 technology just got faster, providing support for full 1080p high-definition video and extreme total system bandwidth.

Shatter the memory barrier. Superior AMD64 architecture offers direct access to DDR2 memory. Enjoy virtually unlimited memory options with AMD64 technology and 64-bit Windows Vista. Shatter the memory barrier with AMD Phenom processors and 64-bit Windows Vista.

INTENSELY VISUAL

Experience Windows Vista. Harness the power of Windows Vista with the AMD Phenom processors. AMD Phenom processors divide and conquer the most complex tasks with true multi-core design. Enjoy the ultimate megatasking experience on Windows Vista. Enjoy virtually unlimited memory options with AMD64 technology and 64-bit Windows Vista. Shatter the memory barrier with AMD Phenom processors and Windows Vista.

STRIKINGLY EFFICIENT

Strikingly efficient Cool‘n’Quiet 2.0 technology.With the next generation of award-winning Cool‘n’Quiet technology, Cool‘n’Quiet 2.0 technology reduces heat and noise so you can experience amazing performance without distraction. Combined with core enhancements that can improve overall power savings, AMD Phenom processors deliver seamless multitasking and optimum energy efficiency. Work, play, talk, and share a PC that’s seen, not heard.

Purchase with Confidence

Founded in 1969, AMD has shipped more than 240 million PC processors worldwide. Customers can depend on AMD64 processors and AMD for compatibility and reliability. AMD processors undergo extensive testing to help ensure compatibility with Microsoft Windows XP, Vista, Windows NT, Windows 2000, as well as Linux and other PC operating systems. AMD works collaboratively with Microsoft and other ecosystem partners to achieve compatibility of AMD processors and to expand the capability of software and hardware products leveraging AMD64 technology. AMD conducts rigorous research, development, and validation to help ensure the continued integrity and performance of its products.

ads